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Outline

1. Introduction and Manufacturing Analytics
2. Synergies between Engineering and Statistics

• Bleeds detection in continuous casting
• Causation-based process control for rolling
• Tonnage signature analysis for stamping
• Nano powder manufacturing scale-up
• Stream of Variation methodologies for multistage 

manufacturing processes 
3. Summary
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Manufacturing System, Product Realization and Big Data
Customer Needs/
Market Prediction

Manufacturing/
Executing Operation

Process Design/
Operation Planning

Quality Inspection
/Improvement

Maintenance Warranty
/Customer Satisfaction

Custom Req. Product Design
& Specifications

Raw Data
Information
Knowledge

Decision

Supply Chain/ 
Logistics

Big Data enables improvements across all stages of the product lifecycle, from 
product conceptualization, to design, production, service, as well as logistics.
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Manufacturing Analytics
• Vision: 
o To achieve “first and every part correct” manufacturing with 

“minimum cost and lead time” by effectively integrating 
engineering models, product and process design 
information, and data analytics tools to drive strategic 
decisions in design, operations, and control of 
manufacturing processes. 

• Key Components: 
o product design, process science, systems informatics, data 

analytics and visualization, adaptive sensing and 
metrology, predictive simulation, dynamic data driven 
optimization
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Challenges in Manufacturing Analytics
• Massive manufacturing data: How to get information from massive data in time 

to make meaningful decisions.
• Data uncertainty and noise: As the size of the data increases exponentially, the 

amount of “noisy” data that is not valuable also becomes significant. 
• Clear engineering objectives: It is essential to find the right information from 

massive data - majority of value comes from minority of data for a given task.
• The “imbalance” in data availability: Massive normal production data vs. 

abnormal production data, even more sparse data for a given type of failures.
• Heterogeneous data: How to develop a unified model and strategy to make an 

informative decision. Complex data structure, data type, and acquisition rate 
bring more challenges in data fusion and decision making.

• Decision making in data rich environment: Data collection decision such as 
sensor placement and data driven predictive and proactive maintenance.

• (more challenges…)
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Research Proposition in Mfg Analytics
• Engineering models and physics: As an engineered system, there is a good 

understanding of engineering physics/models for a given product and process.
• System operational data: The operations of a manufacturing system generate 

massive data that reveals both system functions and unexpected disturbances.
• Two typical ways to model a given system: Physics-based modeling based on 

the 1st principle, and data-driven modeling based on the operational data.
• Physics-based modeling performs well in describing a specific device or a 

machine, but not a real system with various unexpected disturbances; 
• Data-driven modeling works well with data fitting or prediction, but lacking 

of interpretations and finding inherent system characteristics. 
• “Synergies between Engineering and Statistics”: An integration of physics-

based modeling with data-driven methods provides new opportunities in 
manufacturing analytics.  
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Statistics

Engineering/
Domain 
Knowledge

OR/Control

Interdisciplinary Framework:
Fusion of Engineering, Statistics, OR/Control

Statistical Methods Driven by Engineering Knowledge



On-line Bleeds Detection in Continuous Casting

Pan, E., Ye, L., Shi, J., Chang, T., 2009, “On-line bleeds detection in 
continuous casting processes using engineering-driven rule-based 
algorithm”, ASME Transactions, J. of Manufacturing Science and 
Engineering, Vol. 131, Issue 6.



The Process and Sensing Signals
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The Challenges in the Bleeds Detection

C
asting direction

The noises are deep oscillation marks, water 
vapour, water sprays, steel texture, etc.

Bleed

Casting direction

Irregular shapes

False positive signals

Noisy signals

Limited Samples



Proposed Solution: engineering-driven data analysis

Bleed Detection

The original 
billet image

Screen-out 
wit a gray level 

threshold

Screen-out 
by the number of 
connected pixels

Contour pool 
containing real bleeds 

and false positives

Rule-based 
detection approach

Identification of bleed 
and false positive

Pixel Features
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threshold

Threshold on the 
number of 

connected pixels

Feature rules on 
the number of 

pixels

Physical Features
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depth
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geometric size

Geometric 
feature on 
contour

Engineering 
Knowledge

The physical 
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bleed formation

The heat balance, 
pressure balance, 

and strain 
analysis through 

out bleed 
formation

Crescent-shaped 
bleed contour 

Link Module
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Metal level rises and evaporates oil on hot face, creating 
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Illustration of geometric size of bleed contours

Estimation of geometric size of bleeds using engineering knowledge

L is a random variable, whose 
estimated range is needed in KRD 
algorithm.

D is estimated using the equations 
shown above
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The link module for transferring physical feature into pixel feature

( )ˆ ˆ ˆ( ) 260 2 160G P D L= ⋅ ⋅ + ⋅
D̂

minL̂ maxL̂

minψ̂

maxψ̂

Link function coefficients determined by sensor 
settings, sensing condition, image scale, etc.

Screen-out with the number of 
connected pixels

3k1k 1β1α
Key features are optimized 
through
DOE with constraints given 
by physical models



An illustrative sample showing how an original image is processed using KRD algorithm

(a)
Original 
Image

(b)
Image 

processed 
by gray-

level 
threshold

(c)
Image 
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connected 
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Image 
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Illustration of effectiveness



Causation-based Quality Control 

• Li, J., Jin, J., and Shi, J., 2008, “Causation-based T2 Decomposition for Multivariate Process Monitoring and 
Diagnosis,” Journal of Quality Technology, Vol. 40, No. 1, pp. 46-58

• Li, J., and Shi, J., 2007, “Knowledge Discovery from Observational Data for Process Control through Causal 
Bayesian Networks”, IIE Transactions, Vol. 39, pp681-690.

• Liu, K. and Shi, J., 2013, “Objective-Oriented Optimal Sensor Allocation Strategy for Process Monitoring and 
Diagnosis by Multivariate Analysis in a Bayesian Network”, IIE Transactions, 45, 630–643. 

• Liu, K., Zhang, X. and Shi, J., 2013, “Adaptive Sensor Allocation Strategy for Process Monitoring and Diagnosis in 
a Bayesian Network”, (in press)  IEEE Transactions on Automation Science and Engineering. (This paper received 
Best Student Paper Award in the Industrial and Systems Engineering Research Conference (ISERC) 2013)
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Massive Data Generated from Complex Mfg System
• 30 to 50 roller stations
• Each station has more 

than 10 typical 
variables (speed, temp, 
force, lub, etc…)

• Multiple data types with 
different level of 
uncertainties

• Complex interactions 
among the variables

• Multiple products 
produced in the same 
production systems

• Cost of quality/defects 
are HIGH!!!

Q1: How to model and analyze the multi-type, high dimension data with
complex relationships?

Q2: How to conduct effective process monitoring, root cause diagnosis
and proactive control for quality improvements?

distributed sensing in rolling
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VISION: Three interrelated layers of networks: 
- system, sensing, and decision making

Manufacturing System Network

P(X1)

P(X5|X1)
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P(X1)
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P(X2|X1)

P(X3|X2)P(X6|X1, X5)

X6

X1

X2
X4

X5

X3

P(X4|X1)

Extracted Knowledge and Intelligence for Decision Making

Process/Product 
design data

Distributed Sensing Network

System operational data
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• A complex manufacturing system with 
– Numerous process/quality variables measured
– Intricate relationships among them 

Stage-free
process 
variables Z1 Z2

Stage-specific
process/product

variables

X1

X2

X3 X10

X11

Y1 Y2 Y5

X12

Raw 
material/part

Final 
product

Intermediate
product

Intermediate
product

Stage 1 Stage 2 Stage 5

Stage 2 Stage 5

An illustrative example of multistage manufacturing process
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Causation-Based Process Control for Rolling

• Causal relationship modeling by 
integrating manufacturing domain 
knowledge with Bayesian network 
learning algorithm 

– Variable and data preprocessing: variable 
selection, discretization, variable 
grouping

– Learning: production sequence, 
engineering-specified correlations

– Model selection and validation

• Causal model based process control
– Diagnosis: Given quality problem, 

identify the trouble-making process 
conditions

– Quality prediction: Given process 
conditions, predict the product quality 
level 

HeatMold

Ems

Material

Water2

Speed

Defect

Speed

Material Heat Speeder

P(Material | Defect = 3) P(Heat | Defect = 3) P(Speed | Defect = 3)

Li, J., and Shi, J., 2007, “Knowledge Discovery from Observational Data for Process Control through Causal 
Bayesian Networks”, IIE Transactions, Vol. 39, pp681-690.

Li, J., Jin, J., and Shi, J., 2008, “Causation-based T2 Decomposition for Multivariate Process Monitoring and 
Diagnosis,” Journal of Quality Technology, Vol. 40, No. 1, pp. 46-58



On-line Root Cause Diagnosis for 
Repeating Defect Pattern in Rolling

H. Jia and J. Shi, “On-line repeating fault pattern detection and its root cause diagnosis in hot rolling processes”, Technical Report, 
OGT, 2005.
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Hot Rolling Process and Surface Defect Images
(OGT and MacSteel)
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Real-time Dynamic Data Driven Simulation for 
Repeating Defect Pattern Detection
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Signature Analysis for 
On-line Cyclic Waveform Signals

1. Koh, C., Shi, J. and Williams, W., 1995, "Tonnage Signature Analysis Using the Orthogonal (Harr) Transforms”, NAMRI/SME 
Transactions, Vol. 23, pp229-234. 

2. Koh, C., Shi, J., and Black, J., 1996, “Tonnage Signature Attribute Analysis for Stamping Process”, NAMRI/SME Transactions, 
Vol. 23, pp193-198. 

3. Koh, C., Shi, J., Williams, W., Ni, J., 1999, “Multiple Fault Detection and Isolation Using the Haar Transform - Part 1: Theory”, 
ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 121, No.2, pp290-294.

4. Koh, C. , Shi, J., Williams, W., Ni, J., 1999, “Multiple Fault Detection and Isolation Using the Haar Transform - Part 2: Application 
to the Stamping Process”, ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 121, No.2, pp295-299.

5. Jin, J. and Shi, J., 1999 “Feature-Preserving Data Compression of Stamping Tonnage Information Using Wavelets”, 
Technometrics, Nov. 1999, Vol. 41, No.4, pp 327-339.

6. Jin, J., and Shi, J., 2000, “Diagnostic Feature Extraction from Stamping Tonnage Signals Based on Design of Experiment,” 
ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 122, No. 2, pp.360-369.

7. Jin, J., and Shi, J., 2005, “Press Tonnage Signal Decomposition and Validation Analysis For Transfer or Progressive Die 
Processes”, ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 127(1), pp. 231-235.

8. Jin, J. and Shi, J., 2001, “Automatic Feature Extraction of Waveform Signals for In-process Diagnostic Performance 
Improvement”, Journal of Intelligent Manufacturing, Vol. 12, pp267-268.

9. Kim, J., Huang,Q., and Shi, J., 2008, “Latent Variable-based Key Process Variable Identification and Process Monitoring for 
Forging”, SME Transactions Journal of Manufacturing Systems.Vol. 26, No. 1, pp53- 61.

10. Zhou, S., Sun, B., Shi, J., 2006, "An SPC Monitoring System for Cycle-Based Waveform Signals Using Haar Transform", IEEE 
Transactions on Automation Science and Engineering, Vol. 3(1), pp. 60-72.

11. Kim, J., Huang, Q., Shi, J., and Chang, T.-S., 2006, “Online Multi-Channel Forging Tonnage Monitoring and Fault Pattern 
Discrimination Using Principal Curve,” Transactions of the ASME, Journal of Manufacturing Science and Engineering, Vol. 128, 
pp944-950, 2006.

https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p06.pdf
https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p10.pdf
https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p19.pdf
https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p20.pdf
https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p24.pdf
https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p26.pdf
https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p29.pdf
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Tonnage Signature Analysis for Stamping

• High production rates (50 to 500 parts/minutes)
• Low throughput in part measurement and inspection
• Complex mfg process (40+ variables impact on quality)
• Lots of sensors installed in dies and presses for automation and die/press protection 
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System Domain 
Knowledge

Wavelets 
Analysis

Signal feature specifications:
• time domain

profile natural variability
• frequency domain
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Data Fusion

Feature Preserving Data Compression

Jin and Shi, “Feature-Preserving Data Compression of Stamping Tonnage Information Using Wavelets,”  Technometrics, Nov.1999, Vol.41, No.4, pp.327-339.

Quantitative relationships 
between engineering specifications 

and the thresholds in wavelet domain

Quantitative relationships 
between the wavelet thresholds 
and the detection power change 

in process monitoring
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Nonzero wavelet coefficient number of signal 1 = 66
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Nonzero wavelet coefficient number of signal 1 = 621
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(Signal 1: Thicker blank; Signal 2: Thinner blank; Original Data number = 1024)

The detection power loss is 0.91% with and without 
feature-preserving data compression.

Feature Preserving Data Compression: Results
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Nanopowder Manufacturing Process  Control

30

*Reference: Oljaca, M. et al. (2002), Flame synthesis of nanopowders via combustion chemical vapor 
deposition, Journal of materials science letters, 21, 621– 626.
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Nanopowder Manufacturing Scale-up
Atomizer

Control cost

Engineering 
knowledge

Data Statistical Model 
Calibration

Control & 
Evaluation

Quality 
Indices

Predictive Model 
Development

Chang, C. -J., Plumlee, M., Shi, J., 2011, “A predictive Model of Nanomiser Energy And Its Application In System 
Monitoring”, Technical Report to Department of Energy and nGimat Company

Challenges:
• Nano-metrology analysis for 

process control

• Variation propagation in multi-
stage manufacturing process

• Process control capability

Goal: 1kg/day to 1000kg/day



32

Physics-based Feature Extraction & Predictive Model
• Objective: Translate and re-define the nonlinear dynamic 

system into linear model

Nanomixer
Solution 
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Physics-based Data-Driven 
Model Model Validation

04/27/2011 - 33 -
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Stream of Variation Methodologies
for

Multistage Manufacturing Processes (MMP)

Shi, J. “Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes”, CRC Press, 2006. 469pp.

Shi, J. and Zhou, S., 2009, “Quality Control and Improvement for Multistage Systems:  A Survey”, IIE Transactions 
on Quality and Reliability Engineering, Vol. 41, pp744-753.
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Multistage System and 
Its Common Characteristics

1 k+1k … N… product

Root Cause Diagnosis

Design for Variation Management/Reduction

GageGage ?

Distributed Sensing Strategy

•SoV Modeling: model variation and its propagation for MMPs
•Tolerance Synthesis: Allocate optimal tol. given final quality spcs.
•Root cause diagnosis: Find causes of product variability
•Distributed sensing: Select where and what to measure in a process 
•Automatic compensation: Adjust tooling to ensure quality
•Optimal process design: design tooling and stages to minimize Var.

•

•
•

•

1
2

3 4

•

•
•

•
1

2
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4

Level  2

Level  3

Level  4

3

Level  1

Automotive Body Assembly
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Basic Engineering Modeling Approach

• Variation Propagation Model
– System Equation: xk = Ak-1 xk-1 + Bk uk + wk (k=1,2,…N)
– Observation Equation: yk = Ck xk + vk

• State Space Modeling: 
– The variation propagation can be modeled as a state-

space linear system where a machining stage plays the 
role of time

Stage N... ...

yk

uk wk

xk-1 xkStage 1 Stage k

Jin, J. and Shi, J., 1999, “State Space Modeling of Sheet Metal Assembly for Dimensional Control”, ASME Transactions, 
Journal of Manufacturing Science and Engineering, Vol. 121, Nov. 1999, pp756-762.

https://towncrier.mail.umich.edu/Documents%20and%20Settings/apley/Local%20Settings/Temporary%20Internet%20Files/html/p23.pdf
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Product Design:
- Quality representation
- Critical features

Process Design: 
- Relationship between 

workpiece and tooling
- Machine layout
- Process sequences

SoV Modeling for Multistage Mfg Processes

Zhou, S., Huang, Q., Shi, J., 2003, "State Space Modeling of Dimensional Variation Propagation 
in MMP  Using Differential Motion Vectors", IEEE Transactions  on R&A. 19(2),pp296-309. 

Huang, Q., Zhou, S., Shi, J., 2002, "Diagnosis of Multi-Operational Machining Processes by Using Virtual Machining",
Robotics and Computer Integrated Manufacturing, 18, pp.233 –239. 

4 : Overall Error 1 1k k k k k k+ +− −=x A x B u w
Observation: y C x v= +k k k k

1 : Datum Error 1
1

Ax x−
− →k

k k

3 : Machine Error 
Bu x→k

k k

2 : Fixture Error 

http://homepages.cae.wisc.edu/%7Ezhous/papers/2_state_space_modeling.pdf
http://homepages.cae.wisc.edu/%7Ezhous/papers/SOVDiag_con21.pdf
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Multidisciplinary Research:
- SoV Model-Based Multistage Process Control

Multistage Process Control

System and Control
Theory

Multivariate 
Statistical Analysis

The SoV model provides a solid scientific foundation 
to use system/control theory and advanced statistics
in the Multistage process monitoring and diagnostics.

SoV-State Space Model
kkkkkk wuBxAx ++= −− 11 kkkk vxCy +=
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SPC vs. SOV – Based Diagnosis

SPCoperator 
intervention

Statistical Process Control ?

Statistical analysis

Engineering Knowledge
(CAD and CAPP)

SOV Model

Root 
Causes

System and Control
Theory

SOV Methodology:
Quickly identify the root causes 
of variation based on the part 
dimensional measurements

Parts
MeasurementStation 1 Station k Station N... ...
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Variation Pattern Based Diagnosis

Ding, Y., Ceglarek, D., and Shi, J. (2002), “Fault diagnosis of Multi-station Manufacturing Processes by Using State Space 
Approach,” ASME Transactions, Journal of Manufacturing Science and Engineering, 124(2), pp. 313-322. 

in-line
In-process 
sensing data

Estimation of 
occurred fault symptom

Statistical Data Analysis
)(yCov

ykkkkkk wuBxAx ++= −− 11

Engineering
Knowledge

SoV Model

Variation symptoms
of potential faults

off-line

w+= Γuy

Estimation of root causes 
through in-line statistical 

analysis driven by off-line model

Root cause of the fault
*u

')cov()cov( ΓuΓy ⋅⋅=

http://ie.tamu.edu/People/faculty/ding/Diagnosis_PCA_JMSE_2002.pdf
http://ie.tamu.edu/People/faculty/ding/Diagnosis_PCA_JMSE_2002.pdf
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Estimation Based Root Cause Diagnosis

Zhou, S., Chen, Y., and Shi, J., 2004, “Root Cause Estimation and Statistical Testing for Quality Improvement of MMP”, 
IEEE Transactions on Automation Science and Engineering, 1(1), pp73-83. 

1 1 1,...,k k k k k k

k k k k

x A x B u w
k N

y C x v
− −= + +

=
= +

State Space Model:

Input-Output Model:

System and Control Theory

Linear Fault - Quality Model for Statistical Analysis:

U: unknown constants,     i,Wi, and Vi are zero mean independent random variables
Γ, Ψ are known constant matrices.

Ding, Y., Zhou, S., and Chen, Y., 2005, "A Comparison of Process Variation Estimators for In-Process Dimensional 
Measurements and Control", ASME Transactions, Journal of Dynamic Systems, Measurement and Control, 127, pp69-79. 

http://homepages.cae.wisc.edu/%7Ezhous/papers/paper11_revise1.pdf
http://homepages.cae.wisc.edu/%7Ezhous/papers/ding_zhou_chen.pdf
http://homepages.cae.wisc.edu/%7Ezhous/papers/ding_zhou_chen.pdf
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Diagnosability study and distributed sensing 

Define the range space of a matrix as R(.), and 
D=[Г Ψ]. For the mixed linear model
• pTα is diagnosable if and only if p∈R(ГT)
• fTθ is diagnosable if and only if f∈R(H), where H is 

symmetric and given as
2 2 2

:1 :1 :1 : :1 :( ) :1 :1

2 2 2
: :1 : : : :( ) : :

2 2 2
:( ) :1 :( ) : :( ) :( ) :( ) :( )

:1 :1 : : :(

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )

( ) ... ( ) ... ( )
... ...

T T T T
i P Q

T T T T
i i i i P Q i i

T T T T
P Q P Q i P Q P Q P Q P Q

T T
i i P

D D D D D D D D

D D D D D D D D
H

D D D D D D D D
D D D D D

+

+

+ + + + + +

+

=

     

     

) :( )
T

Q P QD N+

 
 
 
 
 
 
 
 
  

where N is the number of replicated samples

Consider the model vwΨuΓμΓy +⋅+⋅+⋅= ~

Zhou, S., Ding, Y, Chen, Y., Shi, J., "Diagnosability Study of Multistage Manufacturing Processes Based on Linear 
Mixed-effects Models”,  Technometrics. 2003. Vol. 45, No.4, pp 312-325.
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Distributed Sensing Strategy and Evaluation
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Total 9 OCMM stations, 375 sensors
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Ding, Y., Shi, J., and Ceglarek, D. (2002), “Diagnosability Analysis of Multi-station Manufacturing Processes,” ASME Transactions,
Journal of Dynamic Systems, Measurement, and Control, 124 (1), pp. 1-13. 

http://ie.tamu.edu/People/faculty/ding/Diagnosability_I_JDSMC_2002.pdf
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Process-oriented Tolerancing Synthesis
SOV Model

stage 1
Product 
Variables X0

Pi

Multistage Manufacturing System

stage k stage N
… Xi-1 Xi

…

Process Variables ui

Product 
Quality XN

Tolerances

$$
cost 1 1 1,...,k k k k k k

k k k k

x A x B u w
k N

y C x v
− −= + +

=
= +

Ding, Y., Jin, J., Ceglarek, D., and Shi, J., (2005), “Process-oriented Tolerancing for Multi-station Assembly Systems,” 
IIE Transactions, 37(6), pp. 493-508. (also Proceedings of IMEAC, 2000)

Huang, Q., Shi, J., 2003, “Simultaneous Tolerance Synthesis through Variation Propagation Modeling of Multistage
Manufacturing Processes,” NAMRI/SME Transactions, 31, pp. 515-522. 
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http://ie.tamu.edu/People/faculty/ding/Tolerance_IIE_2005.pdf
http://www.eng.usf.edu/%7Ehuangq/papers/P4.pdf
http://www.eng.usf.edu/%7Ehuangq/papers/P4.pdf
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Data-mining Aided Design for Fixture 
Layout Optimization

 Statistical tools help to reduce 
the number of designs used for 
classification.

Design library Classification Design selection rules

Good design subset

Local optimization

Improved design

Design alternatives
(1023)Uniform

coverage
selection

Design representatives

Clustering method and
Feature evaluation

Ding, Y., Ceglarek, D., and Shi, J. (2002), “Design Evaluation of Multi-station Manufacturing Processes by Using State 
Space Approach,” ASME Transactions, Journal of Mechanical Design, 124(4), pp. 408 –418. 

Kim, P. and Ding, Y., 2005, “Optimal engineering design guided by data-mining methods,” 
Technometrics, Vol. 47(3), pp. 336-348 

Problem: Fixture Layout Optimization Proposed Solution:
Data Mining Aided Design

http://ie.tamu.edu/People/faculty/ding/DesignEval_DingCeglarekShi_JMD_2002.pdf
http://ie.tamu.edu/People/faculty/ding/DesignEval_DingCeglarekShi_JMD_2002.pdf
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• Assemble 4 parts in 3 stations

2 PTs in stations 1 and 3 right

Active Control and Compensation in MMP
1 1 1,...,k k k k k k

k k k k

x A x B u w
k N

y C x v
− −= + +

=
= +

Eduardo Izquierdo, J. Zhong, J. Shi, J. Hu, (2004) “Adaptive Control of Assembly Quality 
Using Programmable Tooling”, GM CRL Workshop

Wang, H., and Huang, Q., 2005, “Error Cancellation Modeling and Its Application in 
Machining Process Control,”  Accepted by IIE Transactions on Quality and Reliability.
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http://www.eng.usf.edu/%7Ehuangq/papers/P9.pdf
http://www.eng.usf.edu/%7Ehuangq/papers/P9.pdf
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Cautious control strategy considering modeling error

• SoV model with uncertainty

• Cautious control strategy
– Minimum should be achieved at

– Solution: 
• Case study performance
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Implementation

2000

Enabling Techniques

Fundamental Research

Industrial Needs in Variation Reduction

Mathematical 
Modeling for SoV 

SoV 
Diagnosability

Real-time Statistics
Driven by SoV Model

95-97

Software 
Prototype

SoV Testbed
Validation

Optimal gaging
Strategy

98-99

SoV for
Serial-Parallel RMS

Gaging
Reduction 01-02

SoV R&D Strategy and Timelines

Gaging Reduction 03-04

SoV Implementation
Ford Windsor Engine Plant

SoV Implementation
Cummins, DCX, GM

04-07

Quality – ensured 
maintenance

Book/
education curriculum
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Stream of Variation Theory and Applications 

DCS SOVA Product for modeling, analysis and partial 
of the diagnosis and test at auto and aero industry

Error Components Manufacturing System

tolerancing

Die Fabricating Tooling error

Single station 
model

Assembly 
line

Inspection

Stamping 
error

Multi-station 
model

0

1

2

3

4

5

6

7

8

Sensitivity

Assembly system

Diagnosis

Variation analysis

Applications in 
Manufacturing

Modeling

Applications in 
Design

Methodology Development: 50+ papers with best paper 
awards from ASME, IIE, INFORMS, IEEE
Education: A graduate course was developed and adopted 
by multiple universities;
Industrial Impacts: SoV theory has been implemented in 
auto and aerospace and their supplies companies

http://www.gom.com/Images/big/blanks08.jpg
http://www.gom.com/Images/big/blanks08.jpg
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Summary
• Manufacturing Analytics is an emerging research 

area, which provides opportunities, as well as 
challenges, for performance improvement 
throughout the life cycle of a manufacturing 
system.

• Manufacturing Analytics R&D requires 
multidisciplinary efforts including engineering 
knowledge, statistics, and decision making.

• Some initial efforts in manufacturing analytics 
R&D have been made and demonstrated in both 
methodological developments and industrial 
applications.

• More collaborative efforts are required in both 
research and education.
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Summary: 
Key to Success - Multidisciplinary Research and Education

Engineering/
Domain 

Knowledge

Statistics

OR/System 
Theory

Information 
Technology
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Thank you!
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