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Manufacturing System, Product Realization and Big Data
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Big Data enables improvements across all stages of the product lifecycle, from
product conceptualization, to design, production, service, as well as logistics.



Manufacturing Analytics

e Vision:

o To achieve “first and every part correct” manufacturing with
“minimum cost and lead time” by effectively integrating
engineering models, product and process design
Information, and data analytics tools to drive strategic
decisions in design, operations, and control of
manufacturing processes.

« Key Components:

O product design, process science, systems informatics, data
analytics and visualization, adaptive sensing and
metrology, predictive simulation, dynamic data driven
optimization



Challenges in Manufacturing Analytics

* Massive manufacturing data: How to get information from massive data in time
to make meaningful decisions.

« Data uncertainty and noise: As the size of the data increases exponentially, the
amount of “noisy” data that is not valuable also becomes significant.

» Clear engineering objectives: It is essential to find the right information from
massive data - majority of value comes from minority of data for a given task.

* The “imbalance” in data availability: Massive normal production data vs.
abnormal production data, even more sparse data for a given type of failures.

* Heterogeneous data: How to develop a unified model and strategy to make an
informative decision. Complex data structure, data type, and acquisition rate
bring more challenges in data fusion and decision making.

» Decision making in data rich environment: Data collection decision such as
sensor placement and data driven predictive and proactive maintenance.

* (more challenges...)

Product and tooling Design Manufacturing System

distributed sensing in rolling

Manufacturing
Operations




Research Proposition in Mfg Analytics

* Engineering models and physics: As an engineered system, there is a good
understanding of engineering physics/models for a given product and process.

o System operational data: The operations of a manufacturing system generate
massive data that reveals both system functions and unexpected disturbances.

e Two typical ways to model a given system: Physics-based modeling based on
the 15t principle, and data-driven modeling based on the operational data.

* Physics-based modeling performs well in describing a specific device or a
machine, but not a real system with various unexpected disturbances;

« Data-driven modeling works well with data fitting or prediction, but lacking
of interpretations and finding inherent system characteristics.

e “Synergies between Engineering and Statistics”: An integration of physics-

based modeling with data-driven methods provides new opportunities in
manufacturing analytics.

Product and tooling Design TS — distributed sensing in rolling




Interdisciplinary Framework:
Fusion of Engineering, Statistics, OR/Control

Engineering/
Domain
Knowledge

OR/Control

Statistical Methods Driven by Engineering Knowledge



On-line Bleeds Detection in Continuous Casting

Pan, E., Ye, L., Shi, J., Chang, T., 2009, “On-line bleeds detection in
continuous casting processes using engineering-driven rule-based
algorithm”, ASME Transactions, J. of Manufacturing Science and

Engineering, Vol. 131, Issue 6.



The Process and Sensing Signals
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The Challenges in the Bleeds Detection

Noisy signals

Irregular shapes

Bleed

The noises are deep oscillation marks, water
~ vapour, water sprays, steel texture, etc.
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Proposed Solution: engineering-driven data analysis
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billet image
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Mechanism of bleed formation

Oil Film Oil Vapour Oil Film Ol Film Oil Vapour
Mold Wall / Mold Wall Mold Wall /
%C Molten Steel /\,&
Oil Vapour / Molten Steel
Molten Steel Trapped
Unlubricated
e region
Solé?:ﬁmg Solidifying
Shell
@ (b) ©
Metal level stable Metal level rises and evaporates oil on hot face, creating Metal level falls through dry, unlubricated regions on
dry, unlubricated regions the hot face and sticks to the wall while being pulled
by the withdrawal rolls
Oil Film Oil Vapour Oil Film Oil Vapour
Mold Wall Mold Wall

Shell sticks to mould

wall Bleed contour
Liquid steel bleeds
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Pulling action
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Pulling force exerted by the withdrawal rolls causes the thin and Liquid steel bleeds out and solidifies on the
weak shell to tear/rupture mould wall to create a bleed on the billet
surface



Estimation of the Range of Parameter D

based on the Engineering Model

Estimation of geometric size of bleeds using engineering knowledge
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Screen-out with the number of
connected pixels

The link module for transferring physical feature into pixel feature
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lllustration of effectiveness

An illustrative sample showing how an original image is processed using KRD algorithm
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Causation-based Quality Control

Li, J., Jin, J., and Shi, J., 2008, “Causation-based T2 Decomposition for Multivariate Process Monitoring and
Diagnosis,” Journal of Quality Technology, Vol. 40, No. 1, pp. 46-58

Li, J., and Shi, J., 2007, “Knowledge Discovery from Observational Data for Process Control through Causal
Bayesian Networks”, IIE Transactions, Vol. 39, pp681-690.

Liu, K. and Shi, J., 2013, “Objective-Oriented Optimal Sensor Allocation Strategy for Process Monitoring and
Diagnosis by Multivariate Analysis in a Bayesian Network”, IIE Transactions, 45, 630-643.

Liu, K., Zhang, X. and Shi, J., 2013, “Adaptive Sensor Allocation Strategy for Process Monitoring and Diagnosis in
a Bayesian Network”, (in press) IEEE Transactions on Automation Science and Engineering. (This paper received
Best Student Paper Award in the Industrial and Systems Engineering Research Conference (ISERC) 2013)



Massive Data Generated from Complex Mfg System

e 30to 50 roller stations

 Each station has more
than 10 typical
variables (speed, temp,
force, lub, etc...)

« Multiple data types with
different level of
uncertainties

« Complex interactions
among the variables
__.__.J 1041 898

= 111 R e Multiple products
JJQI K8 produced in the same
| = production systems

e Cost of quality/defects
are HIGH!!!

distributed sensing in rolling

Q1. How to model and analyze the multi-type, high dimension data with
complex relationships?

Q2: How to conduct effective process monitoring, root cause diagnosis
and proactive control for quality improvements?



VISION: Three interrelated layers of networks:
- system, sensing, and decision making

Extracted Knowledge and Intelligence for Decision Making
P(Xl)

Process/Product @
design data
E P(XglX1, X5) P(X51X,)

e e

Manufacturing System Network

Distributed Sensing Network
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An illustrative example of multistage manufacturing process

* A complex manufacturing system with

— Numerous process/quality variables measured
— Intricate relationships among them

-~ Stage 2 [-------= > eee --------- )| Stage 5 -------- >

Raw Intermedlate Intermedlate Final
material/part prof uct pro uct product

--------- >| Stage 1 -------2| Stage 2 -------- --------) Stage 5 [------->

Stage-specific
process/product
variables

Stage-free
process
variables
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Causation-Based Process Control for Rolling

o Causal relationship modeling by
integrating manufacturing domain
knowledge with Bayesian network
learning algorithm

— Variable and data preprocessing: variable
selection, discretization, variable

grouping
— Learning: production sequence,
engineering-specified correlations P(Material | Defect=3) P(Heat | Defect=3)  P(Speed | Defect = 3)
— Model selection and validation Lt 05 05
04 04 04
« Causal model based process control N ‘ J J
— Diagnosis: Given quality problem, D’;1 L S D’;_1 - ) [N
identify the trouble-making process Material Heat Speeder
conditions

— Quality prediction: Given process
conditions, predict the product quality
level

Li, J., and Shi, J., 2007, “Knowledge Discovery from Observational Data for Process Control through Causal
Bayesian Networks”, IIE Transactions, Vol. 39, pp681-690. 20
Li, J., Jin, J., and Shi, J., 2008, “Causation-based T2 Decomposition for Multivariate Process Monitoring and
Diagnosis,” Journal of Quality Technology, Vol. 40, No. 1, pp. 46-58



On-line Root Cause Diagnhosis for
Repeating Defect Pattern in Rolling

H. Jia and J. Shi, “On-line repeating fault pattern detection and its root cause diagnosis in hot rolling processes”, Technical Report,
OGT, 2005.



Hot Rolling Process and Surface Defect Images

(OGT and MacSteel)

Steel Casting & Hot rolling p——

Clhezke thas Baltam o go Bk

A Lisl T Sreel ‘*
£
B O es BErilke = T}
O Ecmrs
T aamin
i sl dans
Jriec O = i =
. PR ETS R S
Hor ralling mills ’ Tk muills
Plage Hag
sl Baeel ol
' - 5 wl ukb




Overview of System Structure
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Real-time Dynamic Data Driven Simulation for \%
Repeating Defect Pattern Detection

—————————————————————————————————————————————————————————————————————————————
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Signature Analysis for
On-line Cyclic Waveform Signals

Koh, C., Shi, J. and Williams, W., 1995, "Tonnage Signature Analysis Using the Orthogonal (Harr) Transforms”, NAMRI/SME
Transactions, Vol. 23, pp229-234.
Koh, C., Shi, J., and Black, J., 1996, “Tonnage Signature Attribute Analysis for Stamping Process”, NAMRI/SME Transactions,
Vol. 23, pp193-198.
Koh, C., Shi, J., Williams, W., Ni, J., 1999, “Multiple Fault Detection and Isolation Using the Haar Transform - Part 1: Theory”,
ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 121, No.2, pp290-294.

Koh, C., Shi, J., Williams, W., Ni, J., 1999, “Multiple Fault Detection and Isolation Using the Haar Transform - Part 2: Application
to the Stamping Process”, ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 121, No.2, pp295-299.
Jin, J. and Shi, J., 1999 “Feature-Preserving Data Compression of Stamping Tonnage Information Using Wavelets”,
Technometrics, Nov. 1999, Vol. 41, No.4, pp 327-339.

Jin, J., and Shi, J., 2000, “Diagnostic Feature Extraction from Stamping Tonnage Signals Based on Design of Experiment,”
ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 122, No. 2, pp.360-369.

Jin, J., and Shi, J., 2005, “Press Tonnage Signal Decomposition and Validation Analysis For Transfer or Progressive Die
Processes”, ASME Transactions, Journal of Manufacturing Science and Engineering, Vol. 127(1), pp. 231-235.

Jin, J. and Shi, J., 2001, “Automatic Feature Extraction of Waveform Signals for In-process Diagnostic Performance
Improvement”, Journal of Intelligent Manufacturing, Vol. 12, pp267-268.

Kim, J., Huang,Q., and Shi, J., 2008, “Latent Variable-based Key Process Variable Identification and Process Monitoring for
Forging”, SME Transactions Journal of Manufacturing Systems.Vol. 26, No. 1, pp53- 61.

Zhou, S., Sun, B., Shi, J., 2006, "An SPC Monitoring System for Cycle-Based Waveform Signals Using Haar Transform", IEEE
Transactions on Automation Science and Engineering, Vol. 3(1), pp. 60-72.

Kim, J., Huang, Q., Shi, J., and Chang, T.-S., 2006, “Online Multi-Channel Forging Tonnage Monitoring and Fault Pattern
Discrimination Using Principal Curve,” Transactions of the ASME, Journal of Manufacturing Science and Engineering, Vol. 128,
pp944-950, 2006.
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Tonnage Signature Analysis for Stamping

Process Variable togpage (ton)
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 High production rates (50 to 500 parts/minutes)
« Low throughput in part measurement and inspection
« Complex mfg process (40+ variables impact on quality)

« Lots of sensors installed in dies and presses for automation and die/press protection




Engineering-Driven Feature Extraction
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Feature Preserving Data Compression

Wavelets
Analysis

Wavelet coefficients
thresholding rules
AL

Quantitative relationships
between the wavelet thresholds Data Fusion
and the detection power change

In process monitoring

System Domai
Knowledge

P

Signal feature specifications:
* time domain
profile natural variability
» frequency domain
characteristic freq. range

Detection Power Loss Analysis
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Quantitative relationships
between engineering specifications
and the thresholds in wavelet domain
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Jin and Shi, “Feature-Preserving Data Compression of Stamping Tonnage Information Using Wavelets,” Technometrics, Nov.1999, VVol.41, No.4, pp.327-339.




Feature Preserving Data Compression:

(Signal 1: Thicker blank; Signal 2: Thinner blank; Original Data number = 1024)
Tonnage (ton)

Traditional Denoising
Nonzero wavelet coefficient number of signal 1 = 621
Nonzero wavelet coefficient number of signal 2 = 646

~0 200 400 600 800 1000

Feature-Preserving Data Compression -
Nonzero wavelet coefficient number of signal 1 =66 |
onzero wavelet coefficient number of signal 2 =73 |

o 200 400 600 800 1000
data index

The detection power loss is 0.91% with and w
feature-preserving data compression.

Results

1200

1200

ithout
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Nanopowder Manufacturing Process

Flow
Controller

Nanomiser® -~

Solution
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Powder Collection &
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*Reference: Oljaca, M. et al. (2002), Flame synthesis of nanopowders via combustion chemical vapor
deposition, Journal of materials science letters, 21, 621- 626.
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Nanopowder Manufacturing Scale-up

Flow _
Controller Atomizer
‘ Flame

Filter

|

Solution

Goal: 1kg/day to 1000kg/day

Powder Collection &
Dispersion System

Challenges: ( Engineering \_)(I_Dredictive Model
« Nano-metrology analysis for { knowledge ) | Development |
process control ( ) %tatistictl Modelx[ Qua"ty J
. Variation propagation in multi- [ 2 J_i Calibration Indices
stage manufacturing process W r‘#rol& . |
* Process control capability . Control cost 1 Evaluation |

Chang, C. -J., Plumlee, M., Shi, J., 2011, “A predictive Model of Nanomiser Energy And Its Application In Systen31
Monitoring”, Technical Report to Department of Energy and nGimat Company



Physics-based Feature Extraction & Predictive Model

 Objective: Translate and re-define the nonlinear dynamic
system into linear model

Flow
Controller

Process
Randomness

Solution (Xl)
Flow Rate >( Nanomixer )
. SyStem Solution
System (XQ (NSO r;lggria)lr Output (Y) Powder Collection &
setting input \ y N Dispersion System
| RN Atomizing
| S - Gas
| S
l T~ao Process
v “~~_, vRandomness
_ / Physics-Based Predictive Model  Nanomixer
Soluﬂon (Xl) e ) ) N
Flow Rate > En_glg_lnee?ng Fﬁature Linear System >
ransformation
_f(X. X (ARIMA model System Output ()
System (XQ 5 u, = 1( 17 2) between Y and
setting input N u, = f, (X, X,) ul,u2)
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Stream of Variation Methodologies
for
Multistage Manufacturing Processes (MMP)

Shi, J. “Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes”, CRC Press, 2006. 469pp.

Shi, J. and Zhou, S., 2009, “Quality Control and Improvement for Multistage Systems: A Survey”, IIE Transactions
on Quality and Reliability Engineering, Vol. 41, pp744-753.



Level 1

Multistage System and
Its Common Characteristics

Root Cause Diagnhosis

Gage ? Gage

@_._.< >_>( i: )—»—» product

Distributed Sensing Strategy

Design for Variation Management/Reduction

Automotive Body Assembly

*SoV Modeling: model variation and its propagation for MMPs
*Tolerance Synthesis: Allocate optimal tol. given final quality spcs.
*Root cause diagnosis: Find causes of product variability
Distributed sensing: Select where and what to measure in a process
Automatic compensation: Adjust tooling to ensure quality

*Optimal process design: design tooling and stages to minimize \fo’aSr.



Basic Engineering Modeling Approach

| " |

X X
—* Stagel [—> '~ Ly Stage k > —— Stage N —

I S |

« Variation Propagation Model
— System Equation: x, = A, ; X,; + B u, +w, (k=1,2,...N)
— Observation Equation: y, = C, X, + Vv,

o State Space Modeling:

— The variation propagation can be modeled as a state-
space linear system where a machining stage plays the
role of time

Jin, J. and Shi, J., 1999, “State Space Modeling of Sheet Metal Assembly for Dimensional Control”, ASME Transactions,
Journal of Manufacturing Science and Engineering, Vol. 121, Nov. 1999, pp756-762.
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SoV Modeling for Multistage Mfg Processes

Process Design:

- Relationship between
workpiece and tooling

- Machine layout

Product Design:
- Quality representation
- Critical features

"/\ & J{z'f“)” ) a}};;ff
\éﬂ})@i;’ c:.:‘,k b
A
@® : Datum Error X ——>X,

® : Fixture Error

Bk
® : Machine Error } Uy > Xy
® : Overall Error X, =A,_ X _,+B.U, +w,

Observation: Y, =C/ X, +V,

Huang, Q., Zhou, S., Shi, J., 2002, "Diagnosis of Multi-Operational Machining Processes by Using Virtual Machining”,
Robotics and Computer Integrated Manufacturing, 18, pp.233 —239.

Zhou, S., Huang, Q., Shi, J., 2003, "State Space Modeling of Dimensional Variation Propagation 37
in MMP Using Differential Motion Vectors”, IEEE Transactions on R&A. 19(2),pp296-309.



http://homepages.cae.wisc.edu/%7Ezhous/papers/2_state_space_modeling.pdf
http://homepages.cae.wisc.edu/%7Ezhous/papers/SOVDiag_con21.pdf

Multidisciplinary Research:
- SoV Model-Based Multistage Process Control

System and Control Multivariate
Theory Statistical Analysis

'\ /

SoV-State Space Model

X, =A, X _,+BuU, +w, Y, =C. X, +V,

!

Multistage Process Control

The SoV model provides a solid scientific foundation
to use system/control theory and advanced statistics
In the Multistage process monitoring and diagnostics.
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SPC vs. SOV - Based Diagnosis

Parts

— Station1 — - . — Station N —/—| Measurement

Root il " :
causes Statistical analysis

| '

System and Control
SOV MOdeI ) g Theory
SOV Methodology:
Quickly identify the root causes I
of varia.tion based on the part Engineering Knowledge
dimensional measurements (CAD and CAPP)
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Variation Pattern Based Diagnosis

off-line in-line

Engineering In-process
Knowledge sensing dat
¥ v Y

X, =A X, +Bu, +w,

SoV Model J—} Statistical Data Analysis
y=Tla+w | ‘Cov(y)
Variation symptoms Estimation of
of potential faults occurred fault symptom

\ cov(y)=TI"-cov(u)-I" /

Estimation of root causes
through in-line statistical
analysis driven by off-line model

yu*

Root cause of the fault

Ding, Y., Ceglarek, D., and Shi, J. (2002), “Fault diagnosis of Multi-station Manufacturing Processes by Using State Space 40
Approach,” ASME Transactions, Journal of Manufacturing Science and Engineering, 124(2), pp. 313-322.
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Estimation Based Root Cause Diagnhosis

X, =A, . X ,+B.U, +W
State Space Model: X AT Kk “ k=1,..,N
yk:Cka+Vk

ﬂ System and Control Theory
k k N k
YV = Z'ijllj "‘Z'ijuj +2Bkjwj +Vy
j=1 j=1 j=1

Where l3kj — Ck(I)k,j:' ij — Ck(I)kaij

4

Linear Fault - Quality Model for Statistical Analysis:
Y, =MU+Iru, + YW + V.

Input-Output Model:

U: unknown constants, U ;,W,, and V, are zero mean independent random variables
I', ¥ are known constant matrices.

Zhou, S., Chen, Y., and Shi, J., 2004, “Root Cause Estimation and Statistical Testing for Quality Improvement of MMP”,
IEEE Transactions on Automation Science and Engineering, 1(1), pp73-83.

Ding, Y., Zhou, S., and Chen, Y., 2005, "A Comparison of Process Variation Estimators for In-Process Dimensional 1
Measurements and Control", ASME Transactions, Journal of Dynamic Systems, Measurement and Control, 127, pp69-79.
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Diagnosability study and distributed sensing

Consider the model Y=T-p+T-Uu+¥-w+V

Define the range space of a matrix as R(.), and

D=[I" W]. For the mixed linear model

 pTauis diagnosable if and only if peR('M)

e {10 is diagnosable if and only if feR(H), where H is

symmetric and given as
I (D-ll—Dl)2 (DID|)2 (D:ID:(P+Q))2 DIDl

(D-:—Dl)2 (D-|I—D|)2 (DTD(P+Q))2 DTDl

T 2 T 2 T 2 T
(D:(P+Q)D:1) (D:(P+Q)D:i) (D:(P+Q)D:(P+Q)) D:(P+Q)D:(P+Q)
DD, .. DD, .. DD N

where N is the number of replicated samples

Zhou, S., Ding, Y, Chen, Y., Shi, J., "Diagnosability Study of Multistage Manufacturing Processes Based on Linear
Mixed-effects Models”, Technometrics. 2003. Vol. 45, No.4, pp 312-325.
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Distributed Sensing Strategy and Evaluation
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Ding, Y., Shi, J., and Ceglarek, D. (2002), “Diagnosability Analysis of Multi-station Manufacturing Processes,” ASME Transactions,
Journal of Dynamic Systems, Measurement, and Control, 124 (1), pp. 1-13.
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Process-oriented Tolerancing Synthesis

$$ SOV Model

cost X, =A X, ,+Bu, +w, 1 N
= C, X, +V .
v Yie= =X+ Vi Optimization
7" =min{C; }
Tolerances subject to (T, t) = o2 - [diag(E, ()], >0
forall 0O<t<t, and T, >0 Vi
Aérocess Variables u, >—

P.

A 4

|
\ 4
Product o Xig Xi - Product
) t N )
Variables X, i g oo Quality X

Multistage Manufacturing System

Ding, Y., Jin, J., Ceglarek, D., and Shi, J., (2005), “Process-oriented Tolerancing for Multi-station Assembly Systems,”
IIE Transactions, 37(6), pp. 493-508. (also Proceedings of IMEAC, 2000)

Huang, Q., Shi, J., 2003, “Simultaneous Tolerance Synthesis through Variation Propagation Modeling of Multistage 44
Manufacturing Processes,” NAMRI/SME Transactions, 31, pp. 515-522.
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Data-mining Aided Design for
Layout Optimization

Problem: Fixture Layout Optimization ~Proposed Solution:
Data Mining Aided Design

Uniform

Fixture

Design alternatives

coverage
selection

\aoy

Design representatives

Feature evaluation

Clustering method and

Design library|—>| Classification

| Design selection rules

!

Good design subset

[0 Statistical tools help to reduce
the number of designs used for
classification.

Kim, P. and Ding, Y., 2005, “Optimal engineering design guided by data-mining methods,”
Technometrics, Vol. 47(3), pp. 336-348

Local optimization

\'4

Ding, Y., Ceglarek, D., and Shi, J. (2002), “Design Evaluation of Multi-station Manufacturing Processes by Using State 45

Space Approach,” ASME Transactions, Journal of Mechanical Design, 124(4), pp. 408 —418.
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Active Control and Compensation in MMP

X, =A, X, ,+B.uU +w
k k-1 k-1 k~k k k:].,...,N
Yi = C X +V,
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Eduardo Izquierdo, J. Zhong, J. Shi, J. Hu, (2004) “Adaptive Control of Assembly Quality
Using Programmable Tooling”, GM CRL Workshop

Wang, H., and Huang, Q., 2005, “Error Cancellation Modeling and Its Application in
Machining Process Control,” Accepted by IIE Transactions on Quality and Reliability. 46
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Cautious control strategy considering modeling error

J = min J, =min E[yTN,kQNyN,k +u1Rkuk}
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SoV Ré&D Strategy and Timelines

Industrial Needs in Variation Reduction
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Stream of Variation Theory and Applications

Methodology Development: 50+ papers with best paper
awards from ASME, IIE, INFORMS, IEEE

Education: A graduate course was developed and adopted
by multiple universities;

Industrial Impacts: SoV theory has been implemented in
auto and aerospace and their supplies companies

DCS SOVA Product for modeling, analysis and partial
of the diagnosis and test at auto and aero industry

Error Components Manufacturing System

Stream of
Variation
Modeling and
Analysis
for Multistage
Manufacturing
Processes

Applications in
Manufacturing

Jianjun Shi
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Summary

Manufacturing Analytics is an emerging research
area, which provides opportunities, as well as
challenges, for performance improvement
throughout the life cycle of a manufacturing
system.

Manufacturing Analytics R&D requires
multidisciplinary efforts including engineering
knowledge, statistics, and decision making.

Some initial efforts in manufacturing analytics
R&D have been made and demonstrated in both
methodological developments and industrial
applications.

More collaborative efforts are required in both
research and education.
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Summary:
Key to Success - Multidisciplinary Research and Education
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